The critical layer in sheared flow
نویسنده
چکیده
Critical layers arise as a singularity of the linearized Euler equations when the phase speed of the disturbance is equal to the mean flow velocity. They are usually ignored when estimating the sound field, with their contribution assumed to be negligible. It is the aim of this paper to study fully both numerically and analytically a simple yet typical sheared ducted flow in order to distinguish between situations when the critical layer may or may not be ignored. The model is that of a linear-then-constant velocity profile with uniform density in a cylindrical duct, allowing for exact Green’s function solutions in terms of Bessel functions and Frobenius expansions. It is found that the critical layer contribution decays algebraically in the constant flow part, with an additional contribution of constant amplitude when the source is in the boundary layer, an additional contribution of constant amplitude is excited, representing the hydrodynamic trailing vorticity of the source. This immediately triggers, for thin boundary layers, the inherent convective instability in the flow. Extra care is required for high frequencies as the critical layer can be neglected only together with the pole beneath it. For low frequencies this pole is trapped in the critical layer branch cut.
منابع مشابه
The critical layer in linear-shear boundary layers over acoustic linings
Acoustics within mean flows are governed by the linearized Euler equations, which possess a singularity wherever the local mean flow velocity is equal to the phase speed of the disturbance. Such locations are termed critical layers, and are usually ignored when estimating the sound field, with their contribution assumed to be negligible. This paper studies fully both numerically and analyticall...
متن کاملFrom “discrete” to “continuum” flow in foams
– From both NMR and conventional rheometrical data we show that a foam cannot flow steadily below a critical, apparent shear rate and a critical shear stress. At low velocities the shear localizes in a layer of thickness decreasing with the apparent shear rate. When this thickness becomes smaller than a critical value hc (about 25 bubble diameters) the continuum assumption is no longer valid an...
متن کاملNumerical Simulation of Separation Bubble on Elliptic Cylinders Using Three-equation k-? Turbulence Model
Occurrence of laminar separation bubbles on solid walls of an elliptic cylinder has been simulated using a recently developed transitional model for boundary layer flows. Computational method is based on the solution of the Reynolds averaged Navier-Stokes (RANS) equations and the eddy-viscosity concept. Transitional model tries to simulate streamwise fluctuations, induced by freestream turbulen...
متن کاملImpact of non-hydrostatic effects and trapped lee waves on mountain wave drag in directionally sheared flow
The orographic gravity wave drag produced in flow over an axisymmetric mountain when both vertical wind shear and non-hydrostatic effects are important was calculated using a semi-analytical two-layer linear model, including unidirectional or directional constant wind shear in a layer near the surface, above which the wind is constant. The drag behaviour is determined by partial wave reflection...
متن کاملAXIAL FLOW IN A ROTATIONAL COAXIAL RHEOMETER SYSTEM 1. BINGHAM PLASTIC
A mathematical analysis has been carried out for the axial flow of a Bingham plastic fluid, in the Concentric Cylinder Viscometer which consists of a cylindrical sample holder (the cup) and a cylindrical spindle (the bob) coaxial with the cup. The fluid to be tested flows through the annular gap of the cup and the bob system, sheared by the rotation of the inner cylinder, while the outer cy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011